
Explore Comparative Analysis Software
Development Life Cycle Models

Anshu Mishra
Assistant Professor, Department of Information Science and Engineering

Jyothy Institute of Technology, Bangalore

Abstract-The development lifecycle of software Comprises of
five major stages namely Feasibility study, Requirement
Elicitation, Designing, Coding and Testing. A software process
model is the basic framework which gives a workflow from
one stage to the next. This workflow is a guideline for
successful planning, organization and final execution of the
software project. Generally we have many different
techniques and methods used to software development life
cycle. Project and most real word models are customized
adaptations of the generic models while each is designed for a
specific purpose or reason, most have similar goals and share
many common tasks. This paper will explore the similarities
and difference among these various software development life
cycle models.

Keywords: Software Management Processes, Software
Development Process, Software Development Life Cycle,
Comparative analysis of Software development life cycle models.

1. INTRODUCTION

No one can deny the importance of computer in our life,
especially during the present time. In fact, computer has
become indispensible in today's life as it is used in many
fields of life such as industry, medicine, commerce,
education and even agriculture. The purpose of this paper is
to provide an understanding of the Software Development
Lifecycle (SDLC) models available to software developers.
A Software Project is instructions (computer programs)
that, when executed, provide desired features, function and
performance; data structures that enable the program to
adequately manipulate information and documents that
describe the operation and use of the program. Software
engineers have to face many challenges when they start
developing a new software project like developing
techniques to build software project that can easily cope
with heterogeneous platforms and execution environment.
There are various software development approaches
defined and designed, which are used/employed during
development process of a software, these approaches are
also referred to as "Software Development Process
Models". Each process model follows a particular life cycle
in order to ensure success in the process of software
development. Note that the SDLC acronym is also used to
represent System Development Life Cycle. New SDLC
models are introduced on a regular basis as new technology
and new research requires new SDLC techniques. Recent
new SDLC models include Extreme Programming and

Agile Development. This paper looks at the most commonly
known and used models and describes situations where the
model is an appropriate choice.

Fig. 1 SDLC Phases

2. SOFTWARE PROCESS MODELS

A software process model is an abstract representation of a
process. It presents a description of a process from some
particular perspective as:
1. Specification.
2. Design.
3. Validation.
4. Evolution.
General Software Process Models are
1. Waterfall model: Separate and distinct phases of
specification and development.
2. Prototype model.
3. Rapid application development model (RAD).
4. Evolutionary development: Specification, development
and validation are interleaved.
5. Incremental model.
6. Iterative model.
7. Spiral model.
8. Component-based software engineering : The system is
assembled from existing components.
There are many variants of these models e.g. formal
development where a waterfall-like process is used, but the
specification is formal that is refined through several stages
to an implementable design[1].

Anshu Mishra/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3092-3098

www.ijcsit.com 3092

3. FIVE MODELS

A Programming process model is an abstract representation
to describe the process from a particular perspective. There
are numbers of general models for software processes, like:
Waterfall model, Evolutionary development, Formal
systems development and Reuse-based development, etc.
This research will view the following five models :
1. Waterfall model.
2. Iteration model.
3. V-shaped model.
4. Spiral model.
5. Extreme model.
These models are chosen because their features correspond
to most software development programs.

3.1 The Waterfall Model
The waterfall model is the classical model of software
engineering. This model is one of the oldest models and is
widely used in government projects and in many major
companies. As this model emphasizes planning in early
stages, it ensures design flaws before they develop. In
addition, its intensive document and planning make it work
well for projects in which quality control is a major concern.
The pure waterfall lifecycle consists of several non-
overlapping stages, as shown in the following figure. The
model begins with establishing system requirements and
software requirements and continues with architectural
design, detailed design, coding, testing, and maintenance.
The waterfall model serves as a baseline for many other
lifecycle models.

System Requirements

 Software Requirements

 Architectural Design

 Detailed Design

 Coding

 Testing

Maintenance

Fig. 2 Waterfall Model [4].

Requirements
Definition

 System and
 Software Design

 Implementation and
 Unit Testing

 Integration and
System Testing

 Operation and
 Maintenance

Fig. 3 Waterfall model [2].

Anshu Mishra/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3092-3098

www.ijcsit.com 3093

The following list details the steps for using the waterfall
model:
1 System requirements: Establishes the components for
building the system, including the hardware requirements,
software tools, and other necessary components. Examples
include decisions on hardware, such as plug-in boards
(number of channels, acquisition speed, and so on), and
decisions on external pieces of software, such as databases or
libraries.
2 Software requirements: Establishes the expectations for
software functionality and identifies which system
requirements the software affects. Requirements analysis
includes determining interaction needed with other
applications and databases, performance requirements, user
interface requirements, and so on.
3 Architectural design: Determines the software
framework of a system to meet the specific requirements.
This design defines the major components and the interaction
of those components, but it does not define the structure of
each component. The external interfaces and tools used in the
project can be determined by the designer.
4 Detailed design: Examines the software components
defined in the architectural design stage and produces a
specification for how each component is implemented.
5 Coding: Implements the detailed design specification.
6 Testing: Determines whether the software meets the
specified requirements and finds any errors present in the
code.
7 Maintenance: Addresses problems and enhancement
requests after the software releases.
In some organizations, a change control board maintains the
quality of the product by reviewing each change made in the
maintenance stage. Consider applying the full waterfall
development cycle model when correcting problems or
implementing these enhancement requests.
In each stage, documents that explain the objectives and
describe the requirements for that phase are created. At the
end of each stage, a review to determine whether the project
can proceed to the next stage is held. Your prototyping can
also be incorporated into any stage from the architectural
design and after.
Many people believe that this model cannot be applied to all
situations. For example, with the pure waterfall model, the
requirements must be stated before beginning the design, and
the complete design must be stated before starting coding.
There is no overlap between stages. In real-world
development, however, one can discover issues during the
design or coding stages that point out errors or gaps in the
requirements.
The waterfall method does not prohibit returning to an earlier
phase, for example, returning from the design phase to the
requirements phase. However, this involves costly rework.
Each completed phase requires formal review and extensive
documentation development. Thus, oversights made in the
requirements phase are expensive to correct later.
Because the actual development comes late in the process,

one does not see results for a long time. This delay can be
disconcerting to management and customers. Many people
also think that the amount of documentation is excessive and
inflexible.
Although the waterfall model has its weaknesses, it is
instructive because it emphasizes important stages of project
development. Even if one does not apply this model, he must
consider each of these stages and its relationship to his own
project [4].
 Advantages :
1. Easy to understand and implement.
2. Widely used and known (in theory!).
3. Reinforces good habits: define-before- design, design-
 before-code.
4. Identifies deliverables and milestones.
5. Document driven, URD, SRD, … etc. Published
 documentation standards, e.g. PSS-05.
6. Works well on mature products and weak teams.
 Disadvantages :
1. Idealized doesn’t match reality well.
2. Doesn’t reflect iterative nature of exploratory
 development.
3. Unrealistic to expect accurate requirements so early in
 project.
4. Software is delivered late in project, delays discovery
 of serious errors.
5. Difficult to integrate risk management.
6. Difficult and expensive to make changes to documents,
 “swimming upstream”.
7. Significant administrative overhead, costly for small
 teams and projects [6].

 Pure Waterfall
This is the classical system development model. It consists of
discontinuous phases:
1. Concept.
2. Requirements.
3. Architectural design.
4. Detailed design.
5. Coding and development.
6. Testing and implementation.
Table 1: Strengths & Weaknesses of Pure Waterfall
 Strengths Weakness
 Minimizes planning
overhead since it can be done up
front.
 Structure minimizes wasted
effort, so it works well for
technically weak or
inexperienced staff.

 Inflexible
 Only the final phase
produces a non documentation
deliverable
 Backing up to address
mistakes is difficult.

 Pure Waterfall Summary
The pure waterfall model performs well for products with
clearly understood requirements or when working with well
understood technical tools, architectures and infrastructures.
Its weaknesses frequently make it inadvisable when rapid

Anshu Mishra/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3092-3098

www.ijcsit.com 3094

development is needed. In those cases, modified models may
be more effective.
 Modified Waterfall
The modified waterfall uses the same phases as the pure
waterfall, but is not based on a discontinuous basis. This
enables the phases to overlap when needed. The pure
waterfall can also split into subprojects at an appropriate
phase (such as after the architectural design or detailed
design).

Table 2: Strengths & Weaknesses of Modified Waterfall
Strengths Weaknesses

 More flexible than the pure
waterfall model.
 If there is personnel continuity
between the phases, documentation
can be substantially reduced.
 Implementations of easy areas
does not need to wait for the hard
ones.

 Milestones are more
ambiguous than pure waterfall.
 Activities performed in parallel
are subject to miscommunication
and mistaken assumptions.
 Unforeseen interdependencies
can create problems.

 Modified Waterfall Summary
Risk reduction spirals can be added to the top of the waterfall
to reduce risks prior to the waterfall phases. The waterfall can
be further modified using options such as prototyping, JADs
or CRC sessions or other methods of requirements gathering
done in overlapping phases [5].

3.2 Iterative Development
The problems with the Waterfall Model created a demand or
a new method of developing systems which could provide
faster results, require less up-front information, and offer
greater flexibility. With Iterative Development, the project is
divided into small parts. This allows the development team to
demonstrate results earlier on in the process and obtain
valuable feedback from system users. Often, each iteration is
actually a mini-Waterfall process with the feedback from one
phase providing vital information for the design of the next
phase. In a variation of this model, the software products,
which are produced at the end of each step (or series of
steps), can go into production immediately as incremental
releases.

Fig. 4 Iterative Development.

3.3 V-Shaped Model
Just like the waterfall model, the V-Shaped life cycle is a
sequential path of execution of processes. Each phase must be
completed before the next phase begins. Testing is
emphasized in this model more than the waterfall model.
The testing procedures are developed early in the life cycle
before any coding is done, during each of the phases
preceding implementation. Requirements begin the life cycle
model just like the waterfall model. Before development is
started, a system test plan is created. The test plan focuses on
meeting the functionality specified in requirements gathering.
The high- level design phase focuses on system architecture
and design. An integration test plan is created in this phase in
order to test the pieces of the software systems ability to work
together. However, the low-level design phase lies where the
actual software components are designed, and unit tests are
created in this phase as well.
The implementation phase is, again, where all coding takes
place. Once coding is complete, the path of execution
continues up the right side of the V where the test plans
developed earlier are now put to use.
 Advantages
1. Simple and easy to use.
2. Each phase has specific deliverables.
3. Higher chance of success over the waterfall model due
to the early development of test plans during the life cycle.
4. Works well for small projects where requirements are
easily understood.

Fig. 5 V-Model [3]

 Disadvantages
1. Very rigid like the waterfall model.
2. Little flexibility and adjusting scope is difficult and
expensive.
3. Software is developed during the implementation
phase, so no early prototypes of the software are
produced.
4.This Model does not provide a clear path for
problems found during testing phases [7].

Anshu Mishra/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3092-3098

www.ijcsit.com 3095

Fig. 6 V-Shaped Life Cycle Model [7].

3.4 Spiral Model
The spiral model is similar to the incremental model,
with more emphases placed on risk analysis. The spiral
model has four phases: Planning, Risk Analysis,
Engineering and Evaluation. A software project
repeatedly passes through these phases in iterations
(called Spirals in this model). The baseline spiral,
starting in the planning phase, requirements are
gathered and risk is assessed. Each subsequent spiral
builds on the baseline spiral. Requirements are gathered
during the planning phase. In the risk analysis phase, a
process is undertaken to identify risk and alternate
solutions. A prototype is produced at the end of the risk
analysis phase. Software is produced in the engineering
phase, along with testing at the end of the phase. The
evaluation phase allows the customer to evaluate the
output of the project to date before the project continues
to the next spiral.
In the spiral model, the angular component represents
progress, and the radius of the spiral represents cost.
 Advantages
1. High amount of risk analysis.
2. Good for large and mission-critical projects.
3. Software is produced early in the software life cycle.
 Disadvantages
1. Can be a costly model to use.
2. Risk analysis requires highly specific expertise.
3. Project’s success is highly dependent on the risk
analysis phase. 4. Doesn’t work well for smaller
projects [7].
Spiral model sectors
1. Objective setting :Specific objectives for the phase are
identified.
2. Risk assessment and reduction: Risks are assessed and
activities are put in place to reduce the key risks.
3. Development and validation: A development model for

the system is chosen which can be any of the general models.
4. Planning: The project is reviewed and the next phase of
the spiral is planned [1].

Fig. 7 Spiral Model of the Software Process[1].

 WinWin Spiral Model
The original spiral model [Boehm 88] began each cycle of the
spiral by performing the next level of elaboration of the
prospective system's objectives, constraints and alternatives.
A primary difficulty in applying the spiral model has been the
lack of explicit process guidance in determining these
objectives, constraints, and alternatives. The Win-Win Spiral
Model [Boehm 94] uses the theory W (win-win) approach
[Boehm 89b] to converge on a system's next-level objectives,
constraints, and alternatives. This Theory W approach
involves identifying the system's stakeholders and their win
conditions, and using negotiation processes to determine a
mutually satisfactory set of objectives, constraints, and
alternatives for the stakeholders. In particular, as illustrated in
the figure, the nine- step Theory W process translates into the
following spiral model extensions:
1. Determine Objectives: Identify the system life-cycle
stakeholders and their win conditions and establish initial
system boundaries and external interfaces.
2. Determine Constraints: Determine the conditions
under which the system would produce win-lose or lose-lose
outcomes for some stakeholders.
3. Identify and Evaluate Alternatives: Solicit suggestions
from stakeholders, evaluate them with respect to stakeholders'
win conditions, synthesize and negotiate candidate win-win
alternatives, analyze, assess, resolve win-lose or lose-lose
risks, record commitments and areas to be left flexible in the
project's design record and life cycle plans.
4. Cycle through the Spiral: Elaborate the win conditions
evaluate and screen alternatives, resolve risks, accumulate
appropriate commitments, and develop and execute
downstream plans [8].

Anshu Mishra/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3092-3098

www.ijcsit.com 3096

3.5 Extreme Programming
An approach to development, based on the development and
delivery of very small increments of functionality. It relies on
constant code improvement, user involvement in the
development team and pair wise programming . It can be
difficult to keep the interest of customers who are involved in
the process. Team members may be unsuited to the intense
involvement that characterizes agile methods. Prioritizing
changes can be difficult where there are multiple
stakeholders. Maintaining simplicity requires extra work.
Contracts may be a problem as with other approaches to
iterative development.

Fig. 8 The XP Release Cycle

 Extreme Programming Practices
Incremental planning: Requirements are recorded on Story
Cards and the Stories to be included in a release are
determined by the time available and their relative priority.
The developers break these stories into development "Tasks".
Small Releases: The minimal useful set of functionality that
provides business value is developed first. Releases of the
system are frequent and incrementally add functionality to the
first release.
Simple Design: Enough design is carried out to meet the
current requirements and no more.
Test first development: An automated unit test framework is
used to write tests for a new piece of functionality before
functionality itself is implemented.
Refactoring: All developers are expected to re-factor the
code continuously as soon as possible code improvements are
found. This keeps the code simple and maintainable.
Pair Programming: Developers work in pairs, checking
each other’s work and providing support to do a good job.
Collective Ownership: The pairs of developers work on all
areas of the system, so that no islands of expertise develop
and all the developers own all the code. Anyone can change
anything.
Continuous Integration: As soon as work on a task is
complete, it is integrated into the whole system. After any
such integration, all the unit tests in the system must pass.
Sustainable pace: Large amounts of over-time are not
considered acceptable as the net effect is often to reduce code
quality and medium term productivity.

On-site Customer: A representative of the end-user of the
system (the Customer) should be available full time for the
use of the XP team. In an extreme programming process, the
customer is a member of the development team and is
responsible for bringing system requirements to the team for
implementation.
 XP and agile principles
1. Incremental development is supported through small,
frequent system releases.
2. Customer involvement means full-time customer
engagement with the team.
3. People not process through pair programming, collective
ownership and a process that avoids long working hours.
4. Change supported through regular system releases.
5. Maintaining simplicity through constant refactoring of
code [1].

 Advantages
1. Lightweight methods suit small-medium size projects.
2. Produces good team cohesion.
3. Emphasises final product.
4. Iterative.
5. Test based approach to requirements and quality
assurance.

 Disadvantages
1. Difficult to scale up to large projects where
documentation is essential.
2. Needs experience and skill if not to degenerate into code-
and-fix.
3. Programming pairs is costly.
4. Test case construction is a difficult and specialized skill
[6].

4. COMPARATIVE ANALYSIS:
Waterfall Model is easy to manage due to the rigidity of the
model as each phase has specific deliverables and a review
process. It works well for smaller projects where
requirements are very well understood.
V-shaped Model has higher chance of success over the
waterfall model due to the development of test plans during
the life cycle. It works well for small projects where
requirements are easily understood.
Iterative model is at the heart of a cyclic software
development process . It starts with an initial planning and
ends with deployment with the cyclic interactions in between.
Easier to test and debug during a smaller iteration. Easier to
manage risk because risky pieces are identified and handled
during its iteration.
Spiral model is good for large and mission-critical projects
where high amount of risk analysis is required like launching
of satellite.
Comparison between different SDLC models in relation to
their features like requirements, cost, resource control, risk
involvement, changes incorporated, time frame, interface,
reusability etc.

Anshu Mishra/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3092-3098

www.ijcsit.com 3097

5. CONCLUSION AND FUTURE WORK
After completing this research, it is concluded that there are
many existing models for developing systems for different
sizes of projects and requirements. Waterfall model and spiral
model are used commonly in developing systems. Each
model has advantages and disadvantages for the development
of systems, so each model tries to eliminate the disadvantages
of the previous model.
Finally, some topics can be suggested for future works:
1. Suggesting a model to simulate advantages that are

found in different models to software process
management.

2. Making a comparison between the suggested model and
the previous software processes management models.

3. Applying the suggested model to many projects to ensure
of its suitability and documentation to explain its
mechanical work.

REFERENCES
[1] Ian Sommerville, "Software Engineering", Addison Wesley, 7th edition,

2004.
[2] CTG. MFA – 003, "A Survey of System Development Process Models",

Models for Action Project: Developing Practical Approaches to
Electronic Records Management and Preservation, Center for
Technology in Government University at Albany / Suny,1998 .

[3] Steve Easterbrook, "Software Lifecycles", University of Toronto
Department of Computer Science, 2001.

[4] National Instruments Corporation, "Lifecycle Models", 2006 ,
http://zone.ni.com.

[5] JJ Kuhl, "Project Lifecycle Models: How They Differ and When to Use
Them",2002 www.business-esolutions.com.

[6] Karlm, "Software Lifecycle Models', KTH,2006 .
[7] Rlewallen, "Software Development Life Cycle Models", 2005

,http://codebeter.com.
[8] Barry Boehm, "Spiral Development: Experience, Principles, and

Refinements", edited by Wilfred J. Hansen, 2000.

Anshu Mishra/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3092-3098

www.ijcsit.com 3098

